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ABSTRACT

VM-103, previously a Co=-25W-3Cr-1Ti-0.5Zr-0.5C research laboratory super-
alloy, was further advanced by developing forging, hot rolling, and cold
rolling parameters for fabrication of 25-50 1b. (11-23 kg) ingots produced
by induction plus vacuum arc remelting and induction plus electroslag re-
melting. Electroslag remelted VM-103 proved superior in respect to strength,
ductility, and fabricability. Aging studies showed significant hardening
effects on prior annealed and prior cold-worked material. The 2200°F (1205°C)
yield strength was increased by 1407 by aging prior annealed material. The
fabrication studies, conventional and high strain rate tensile tests, fatigue
tests, and bend tests indicated that VAR-103 is competitive with conventional
superalloys, particularly for short time high temperature applications.
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1. SUMMARY

The objective of this program was to advance VM-103, a Co-25W-3Cr-1Ti-
0.5Zr-0.5C superalloy from a research laboratory status to the level of an
advanced superalloy, usable for numerous high temperature applications.

To accomplish this objective, a fabrication development and physical
metallurgy study was conducted on five 25-50 1b. (11-23 kg) ingots, two
produced by induction plus vacuum arc remelting and three produced by in-
duction plus electroslag remelting. Processing parameters for primary and
secondary fabrication were developed, and 0,012 in. (0.30 mm) thick foil
was produced from the 4 in. (10 cm) diameter ingots. The processes in-
cluded hammer forging, hot rolling, and cold rolling. This work showed
that VM-103 can be produced and fabricated by production oriented processes
and is relatively fabricable. The electroslag remelted ingots showed sig-
nificantly higher fabricability than the vacuum arc remelted material.

Mechanical testing consisting of conventional and high strain rate tensile
tests, bend tests, and limited fatigue tests was conducted to establish
properties of wrought material and ascertain differences between results of
the two basic melting processes. Conventional tensile tests at 75 and
1600-2200°F (24°C and 870-1205°C) showed properties equal to or better than
the early NASA laboratory heats, High strain rate tests (at 5/minute)
showed the alloy to be very strain-rate sensitive and also indicated that
strengthening effects of cold work were retained for short times at 1800°F
(980°C). The limited bend and fatigue tests indicated superiority of the
electroslag remelted material; this agreed with the tensile results which
showed generally higher strengths and ductilities on electroslag vs. vacuum
arc remelted material.

Aging studies were conducted on prior annealed and prior cold-worked ma-
terial to investigate possible strengthening mechanisms. Aging treatments
from 700-1600°F (370-870°C) for 1-100 hours were found to be effective in
hardening prior cold-worked material, and to a lesser degree, prior annealed
material. Tensile tests at 2200°F (1205°C) on prior annealed and aged
samples showed an increase in yield strength of approximately 140%. More
detailed study of this phenomenon is required,

Based on the results of the program, it was concluded that VM-103 is a pro-
ducible, fabricable, high strength alloy which is competitive with other con-
ventional nickel and cobalt base superalloys, particularly for short time
high temperature applications., Further work in areas of compositional
control and thermomechanical processing is recommended,



2. INTRODUCTION

This report summarizes the results of a NASA-funded program with the ob-
jective of further developing VM-103, a NASA high strength cobalt base
superalloy. This alloy, with a nominal composition of Co-25W-3Cr-1Ti-0.5Zr-
0.5C, shows potential for various high temperature applications due to its
excellent high temperature strength properties. It also appears to be com-
petitive with conventional superalloys such as L-605, René 41, Hastelloy X,
and Waspaloy for numerous aerospace and ordnance high temperature applications.

NASA's early research work on cobalt-tungsten alloys, conducted by Freche,

et al.,l'4 involved systematic alloying studies wherein various composi-

tions were evaluated primarily with respect to elevated temperature proper-
ties and fabricability. This work was conducted on vacuum or inert atmosphere
single induction melted heats of 3-4 1b. (<2 kg). The VM-103 composition
appeared to be very promising.

Subsequently, in seeking improved superalloys for various in-house design
requirements, Aeronutronic conducted an internally funded effort to generate
more complete information on VM-103 regarding mechanical properties, fabri-
cability, weldability, compositional effects, and applicable melting
processes. During Aeronutronic's program, various hardware items related
to missile hot gas valves and high cyclic rate gun components were fabri-
cated from VM-103 and successfully tested. 1In order to accomplish this
work, 25-50 1b. (11-23kg) ingots of VM-103 were successfully produced by
two production oriented duplex melting processes, i.e., the conventional
vacuum induction + vacuum arc remelt (VAR) and the relatively new induction
+ electroslag remelt (ESR) processes.

The program discussed in this report followed at Aeronutronic under NASA
funding. The program initiated in March 1969 was designed to further
advance VM-103 technology by conducting fabrication processes development
and physical and mechanical metallurgy studies. Hot and cold working
parameters and thermal treatments for processing the alloy from ingot to
bar, sheet, or foil were developed. A metallurgical study established the
effects of melting and processing on mechanical properties and aided in
improving an understanding of the basic physical metallurgy of the alloy.

The program was divided into five tasks, briefly described below.

(1) Task I - Hot Working Study

This task involved determining optimum hot working
and annealing parameters for the alloy and estab-

lishing the effects of melting process (i.e., VAR

versus ESR) on hot working characteristics.




(2) Task II - Cold Working Study

This task was designed to develop optimum cold
working and annealing parameters for producing
thin VM-103 sheet and foil and to determine the
effects of the melting process on cold workability.

(3) Task IITI - Mechanical Property Evaluation

This task involved tensile and fatigue testing of
annealed and cold worked alloy, and included a com-
parison of VAR versus ESR material properties.

(4) - Agi c i i d
Study

This task was designed to determine effective aging
treatments for the alloy and to recommend maximum
short time service temperatures for cold worked
material. A correlation of microstructure with
processing variables and mechanical behavior re-
sulted in an improved understanding of the physical
metallurgy of the alloy.

(5) Task V - Evaluation of an Ingot with Improved
Composition

This task was added during the program for purposes

of evaluating a 50 1b., ESR heat with improved composi-
tion control with respect to fabricability and me-
chanical properties.

As discussed below, successful completion of these tasks resulted in
encouraging data and in a significant advancement in knowledge of the alloy's
properties.

3. PROCEDURE

Starting Material

As indicated above, most of the early work on VM-103 had been conducted on
small 3-4 1b. (<2 kg) vacuum or inert atmosphere single induction melted
heats. This process is very convenient and appropriate for research work
but is not usually considered acceptable for wrought superalloy production
due to inherent microsegregation and relatively high impurity levels.
Duplex melting methods are frequently used such as the conventional vacuum
induction + vacuum arc remelting (VAR), and more recently, the induction +
electroslag remelting (ESR) processes. ESR is a relatively new process



that has been shown to generally improve such properties as ductility,
fabricability, fatigue strength, and fracture toughness of various steels
and nickel base superalloys.J,0

Two 25 1b. (11 kg), 4 in. (10 cm) diameter VAR ingots melted at Aeronutronic,
designated hereafter as 20-1 and 20-5, were selected for use on this program.
In addition, 50 1b. (23 kg) ESR heats (melted from the same raw stock as the
VAR ingots) designated PF-11 and PF-13 were supplied by ESCO Corporation,
Portland, Oregon. Figure 1 shows the two original as-cast ESR heats and a
typical VAR heat 20-1. Chemical analyses of the VM-103 heats are presented
in Table I. All metallic elements reported were determined by X-ray
spectroscopy with an estimated standard deviation of * 25% for Ti and Zr,
and + 10% for the remaining elements. Carbon was determined by gas analysis
with an estimated standard deviation of less than + 2%.

Because the analyses of the initial four heats indicated a need for improved
compositional control, Heat No. PF-288 was supplied by NASA (purchased from
ESCO) near the end of the program. This heat, although an improvement in

some respects, still did not meet the targets for tungsten and zirconium,
Although the results of work performed on these five heats were very encourag-
ing as discussed in Section 4, additional melting process development may
result in improved properties and fabricability. Levels of alloying elements
such as zirconium and titanium should be better controlled, and effects of
impurities such as Fe, Ni, Mn, and Si should be better understood.

Forging

Prior to this program, the primary hot working of VM-103 was essentially
limited to hot rolling small cast pieces. 1In order to more closely simulate
superalloy production processes for producing billets from cast ingots,
hammer forging was selected for working the 4 in. (10 cm) diameter ingots to
1 x1 in., (2.5 x 2.5 cm) bar. Because hammer forging is usually considered

TABLE I

CHEMICAL ANALYSES OF VM-103 HEATS
(Weight Percent)

VAR ESR

Target Analysis 20~1 20-5 PF-11 PF-13 PF-288
W 25 26.89 26,71 24.13 23.40 28.15
Cr 3 2,56 2.63 2.51 2.83 3.00
Ti 1 0.94 1.45 0.95 1.47 1.06
Zr 0.5 0.89 0.73 0.25 0.30 0.24
C 0.5 0.57 0.55 0.50 0.49 0.45
Co Balance Bal. Bal. Bal. Bal. Bal.
Fe 0.1 Max. 0.18 0.12 1.08 1.64 0.16
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As-Received ESR Ingots PF-11 and PF-13.

As-Cast VAR Heat 20-1 and Remainder of
Consumable Electrode.

FIGURE 1. VM-103 INGOTS USED FOR THIS PROGRAM




to be a severe test of hot workability, particularly for a cast structure,
this process was selected as a conservative assessment of VM-103 hot working
characteristics. A total forging reduction of approximately 12:1 was
selected for primary working in order to assure that maximum homogeneity

and resulting properties could be achieved. Superalloys are commonly hot
worked at least 8:1 prior to usage.

The ESR ingots were sectioned; one-half of each was set aside as backup
material, while the other half was forged along with the entire VAR ingots.
The forging was conducted at West Coast Forge, Compton, California, with a
3500 pound (15,500 N) hammer forge. Based on previous work at NASA and

at Aeronutronic involving successful hot rolling of cast VM-103, a tempera-
ture range of 2150°-2200°F (1175-1205°C) was selected and used for forging
trials on a small section of VAR heat 20-5. The preliminary forging trials
led to the following procedure which was used successfully for the five
ingots:

(1) Soak at 2175°F (1190°C) for 1/2 hour.

(2) Forge in radial direction to 3 in. x 3 in.
(7.6 x 7.6 cm) square using reductions of
approximately 8-10%.

(3) Return to furnace after each reduction; soak
at temperature for 15 minutes.

(4) Forge to 1l in. x 1 in. (2.5 x 2.5 cm) square
using 15-20% reductions.

(5) Return to furnace after each reduction; soak
at temperature for 10 minutes.,

(6) After last pass, soak at temperature for 10
minutes and water quench,

Hot Rolling

Although hot rolling of VM-103 had been accomplished by NASA and Aeronutronic,
no effort had been expended toward optimizing parameters of temperature,
soaking time, maximum percent reductions, etc., nor was the importance of
these parameters investigated. The goals were to establish parameters for
maximum hot rolling reductions without significant edge cracking and with-
out adversely affecting the microstructure (i.e., excessive grain growth,
grain boundary carbide precipitation, etc.). A further goal was to in-
vestigate the variation in hot-workability between heats produced by VAR or
ESR.




Samples of 1 x 1 in. (2.5 cm x 2.5 cm) square bar, representing both VAR
and ESR as-forged material were subjected to rolling trials, using 5-50%
reductions per pass at temperatures of 2100, 2175, and 2250°F (1150, 1190,
and 1230°C) in order to ascertain maximum reductions without edge cracking.
These results are discussed in Section 4.

Following this, in order to investigate effects of rolling temperature on
microstructure and hardness, additional samples were hot rolled at each of
these three temperatures to 0.10 in. (2.5 mm) thickness from the as-forged
bar using an identical reduction schedule (Table II). After the last pass,
the material was soaked at the rolling temperature for 10 minutes and water
quenched. An average hardness was determined, and the resulting micro-
structure was observed by optical microscopy. The data, presented and
discussed in Section 4, indicated that 2175°F (1190°C) was the optimum.

TABLE II

HOT ROLLING SCHEDULE USED TO ESTABLISH EFFECTS OF
ROLLING TEMPERATURE ON MICROSTRUCTURE AND HARDNESS OF VM-103

Ihickness Reheat Time

Pass Inch mm % Reduction (Minutes)
1 0.90 22 10 10

2 0.79 20 12 8

3 0.68 17 14 8

4 0.56 14 17 8

5 0.45 11 20 8

6 0.31 8.0 30 8

7 0.22 5.6 30 5

8 0.15 3.9 30 5

9 0.10 2.5 35

Notes:

1. Rolling Temperatures: 2100, 2175, 2250°F + 25°F
' (1150-1190-1230°C + 14°C)

2. Starting Material: 1 in. x 1 in. (25 x 25 mm)
square bar

3, Initial Preheat Time: 30 minutes



rolling temperature. The 2175°F (1190°C) temperature and reduction schedule
in Table II were utilized to produce additional 0.10 in. (2.5 mm) thick
sheet for the remainder of the program.

Cold Rolling

Early NASA work and subsequent Aeronutronic efforts had indicated that
VM-103 could be cold worked without much difficulty. Further efforts on
this program were directed toward establishing base line parameters for
producing sheet or foil by cold rolling, determining work hardening rates,
and comparing effects of melting process (VAR vs. ESR) on cold workability.
Small samples of hot rolled and annealed material from the four heats PF-11,
PF-13, 20-1, and 20-5 were cold rolled ~5 - 40% to determine maximum re-
ductions without significant edge cracking. The average hardness was mea-
sured after various reductions, and a hardness vs. percent cold work curve
was established. Intermittent annealing schedules for cold rolled material
were optimized as discussed below. '

Annealing

In conjunction with the hot and cold rolling investigations, establishment
of optimum annealing parameters (i.e., temperature, time, and cooling rate)
was accomplished. The criteria for optimum annealing treatments were
minimum hardness, minimum grain growth, and minimum matrix or grain boundary
carbide precipitation. The following variables were investigated:

(1) Materials:

(a) 0.10 in. (2.5 mm) thick hot rolled sheet
from heats 20-5 and PF-11,

(b) 0.10 in. (2.5 mm) thick cold rolled 25%
reduced) sheet from heats 20-1, 20-5, PF-11,
and PF-13.

(2) Temperatures: 2100, 2200, and 2300°F (1150, 1205,
and 1260°C).

(3) Time: 36 minutes.

(4) Cooling Rates: water quench, air cool, and furnace
cool.

Hardness and microstructure were observed on the heat treated samples.
Using the criteria above, an annealing treatment of 2200°F (1205°C) for 30
minutes followed by a water quench was selected for both.the hot.and cold
worked material. The data are presented in Section 4, These parameters
were used throughout the program and unless otherwise specified were used
for all "annealed" material.




Aging

Although VM-103 was designed to be a solid solution strengthened alloy,
preliminary NASA data indicated an aging phenomenon, particularly in the
1600°F (870°C) range, resulting from precipitation of Co3W associated with
hcp cobalt stacking faults. Aging studies conducted on this program were
directed toward achieving a better understanding of this effect and also
determining if aging in conjunction with prior annealing or prior cold work
would be useful as a strengthening mechanism,

Samples of annealed and 25% cold-worked 0.10 in. (2.5 mm) thick sheet

from heat PF-11 were encapsulated in quartz tubes, evacuated to 10”2 mm Hg
and sealed to prevent oxidation. The samples were then aged for periods
of 1, 10, and 100 hours at temperatures of 700, 1000, 1300, and 1600°F
(370, 540, 705, and 870°C). Hardness measurements, optical and electron
microscopy, and extraction X-ray diffraction, were utilized to evaluate
aging effects,

Mechanical Testing
Tensile Testing

The room temperature tensile properties of both annealed and cold worked
material, and elevated temperature tensile properties of annealed material
from all four heats were determined. Material which had been cold rolled
from 0,10 to 0,040 in. (2.5 mm to 1,0 mm) sheet was utilized in the
annealed and 15 and 257% cold worked conditions. Specimens were machined
to the configuration shown in Figure 2 and Zyglo inspected. Testing was
conducted on a 10,000 1b,., capacity Instron testing machine equipped with a
2200°F (1205°C) resistance furnace. The specimens were brought from
ambient to test temperature in about 30 minutes, soaked at temperature for
an additional 15 minutes, and then tested at a strain rate of 0.005/minute
to 0.4% offset yield followed by 0.05/minute to failure. An extensometer
was used for measuring strain till about 1% elongation.

High Strain Rate Tensile Testing

Because of the desirability of utilizing VM-103 in the cold worked condi-
tion for short time elevated temperature applications and in order to
determine effects of strain rate on mechanical properties, high strain rate
tensile tests were performed.

Rectangular sheet specimens, & in. x 0.25 in. (100 mm x 6 mm) were fabri-
cated from 0.040 in. (1.0 mm) thick sheet from heat PF-11 in the annealed
15% cold worked and 25% cold worked conditions. The specimens were tested
on a "Gleeble" machine at a strain rate of 5/minute at temperatures of 75,
1800, .2000, and 2200°F (24, 980, 1095, and 1205°C). The samples were
electrically self-resistance heated at a rate of approximately 500°F



0.50 R
0.125 DRILL
W +0.002 2 HOLES
+0.001
W = 0.250 +0.005 l
\
_—

U
® §— -
<X ~
«— 1.00 = T
1.250 *0.005 S =
m »
0.375 < 3.500 +0.010 > ° %
$0.010 ) : s ‘ )
- 4,25 >
om
38
(@] .
* O
© f
| | i
e 1.5 1 1 HININ J
| | 4

FIGURE 2. VM-103 SHEET TENSILE SPECIMEN
(All dimensions in inches)

10




(260°C)/sec., and held at temperature either 5 or 25 seconds prior to
application of the load., Holding time was varied in an attempt to assess
recovery and recrystallization behavior. The data were evaluated, and
selected samples were examined metallographically.

Bend Testing

In order to ascertain the comparative cold forming characteristics of the
two melting processes, bend tests were conducted on sheet from heats 20-1,
20-5, PF-11, and PF-13. Hot-rolled and annealed 0.10 in. (2.5 mm) sheet
was cold reduced to 0,03 in. (0.76 mm) thickness and subsequently annealed
using the parameters noted above. Bend specimens with a 20:1 width to
thickness ratio were machined and tested in three point bending at 1T to

4T bend radii using ASTM E2Y0-66 testing procedures.

Fatigue Testing

Tension-tension fatigue tests were conducted on VAR 20-1 and ESR PF-11 to
compare the effect of melting process on fatigue properties. The test
parameters of specimen thickness and stress were chosen to simulate missile
hot gas valve thickness and cycle lives. Specimens were machined to the
configuration shown in Figure 3 from material that had been cold rolled
from 0,100 in. to 0,012 in, (2.54 mm to 0,30 mm) and then annealed, All
testing was performed at 2000 cycles per minute on a Budd (Tatnall-Krause)
VSP-150 fatigue testing machine with a direct stress attachment. The
stress range was from O to 75 ksi (0 to 516 N/mmZ).

Metallurgical Analyses

Metallography

Samples were prepared for metallographic observation using the following
me thod:

(1) Successive grinding on 180, 240, 360, and 600 grit
silicon carbide discs.

(2) Polish on 6 micron followed by 1 micron diamond,
(3) Final polish on .05 micron alumina.

(4) Etch by swabbing for 4 to 8 seconds with hydro-
chloric acid saturated with ferric chloride.

(5) Ultrasonically clean for 2 to 3 minutes in dis-
tilled water.
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A Leitz MM-5 metallograph was used for optical microscopy and photomicro-
graphs using bright field illumination. Observations were made at mag-
nifications from 100 to 1000X. Grain size measurements were obtained

using the ASTM E-112 linear intercept method. The reported grain sizes
refer to the calculated "diameter" of an average grain with a mean standard
deviation of + 10%.

Electron Microscopy

Specimens were prepared for electron microscopy using disc samples and the

jet technique. The equipment used including the photocell device to stop

the polishing_action upon specimen perforation has been described by DuBose
and Stiegler, Discs about 0.12 in. (3.0 mm) in diameter by 0.02 in., (0.5 mm)
thick were dimpled using a room temperature 5% perchloric acid in glacial
acetic acid electrolyte at 350 volts and about 200 ma/mm2. The dimpled

discs were then final electropolished at 0-5°C in a 10% sulfuric acid in
ethanol electrolyte at 30-60 volts using rapid continuocus stirring.
Observations were made with a Hitachi HU-10 electron microscope operated

at 100 kv.

Extraction X-Ray Diffraction Analysis

Phase Extraction Technique

A process for electrolytic dissolution of the cobalt alloy matrix leaving
an undissolved precipitate residue for analysis was developed. The
electrolyte consisted of 90% absolute methyl alcohol with 10% sulfuric acid.
Samples, approximately 1 x 2 x 1/8 in, (25 x 51 x 3 mm), were weighed then
clamped between two platinum cathodes slightly larger than the sample faces,
placed 1/2 in., (13 mm) to each side of the sample faces, The sample was
held in place with a strong alligator clamp., The clamp and platinum
cathodes were firmly fastened to copper sheet strips which were rigidly held
in place by mounting through a rubber stopper. The polishing was
accomplished using a water jacket flask., The electrolyte was agitated
gently by use of a magnetic stirrer. The bar was wrapped in Saran for

easy removal of magnetic residues. Temperature was maintained throughout
the process at 72°F (22°C). A constant voltage potential unit power

source was used at 2.4 volts and 0.8 amperes. The residue was filtered and
washed with clean electrolyte, then clean alcohol every two hours, at which
time new electrolyte was put into the flask, Sufficient amounts of each
sample were obtained in an 8 hour period, with three electrolyte changes,

to allow for magnetic separations of the residues after they had been
thoroughly rinsed and dried, then weighed along with the remainder of the
unpolished sample.
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X-Ray Diffraction Analysis

The separated portions were run on a Norelco X-ray diffractometer using
filtered copper radiation set at 40 kilovolts and 20 milliamperes, with
1° scattering and receiving slits. Scans were made at 400 counts/second
full scale, and intense lines were rerun at 800 or 1600 counts per second
to prevent running off the chart scale.

Sample contents were approximated by using the sums of the (111) and (200)
reflections of face centered cubic compounds and the (2000) and (0002)
lines of the hexagonal compounds. All pairs of lines of each compound were
added together, then each paired sum was divided by the total counts of all
paired sums,

4. RESULTS AND DISCUSSION

Forging

The starting ESR ingots (Figure 1) were very sound and required only minor
conditioning which was performed by hand grinding prior to forging. The
VAR ingots exhibited moderate amounts of localized internal porosity. The
approximate forging yields of all the ingots, calculated as the percent by
weight of successfully forged material relative to the total weight of
material submitted for forging, were: 20-1, 34%; 20-5, 100%; PF-11, 100%;
PF-13, 90%; and PF-288, 98%. Total forging reductions were approximately
12:1 which equals or exceeds reductions usually performed in primary fabri-
cation of production superalloy billets. A portion of the 20-5 1 in. x

1 in. (2.5 x 2.5 cm) bar was further forged to 1/2 in. x 1/2 in. (1.3 x
1.3 cm), further indicating good forgeability for as-cast material using
hammer forging which is a relatively severe technique. Figure 4 shows
20-5 after 12:1 and 48:1 forging reductions. The forgeability compared
favorably with other superalloys such as L-605.

" The ESR ingots exhibited superior metal flow characteristics and less edge
cracking than the VAR ingots. The high losses incurred in 20-1 were
partially attributed to porosity within the ingot. After the last pass,
the ingots were soaked at the forging temperature (2175°F or 1190°C) for

10 minutes and water quenched, In this condition, their hardness was R¢
34-37. The ESR and VAR billets exhibited mean grain sizes of about 25 and
35 microns, respectively. Photomicrographs taken transverse to the forging
directions of the five heats are shown in Figure 5. Heat PF-288 (low Fe
content) showed the best hot workability of all the ingots. Based on this
work, the hot workability of VM-103, particularly ESR remelted material,

14




FIGURE 4.

AS-FORGED VAR BILLET 20-5 ILLUSTRATING FORGING
REDUCTIONS OF 12:1 and 48:1.
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appears comparable to or better than most other nickel and cobalt base
superalloys. To summarize, typical parameters for forging VM-103 are:

Temperature: 2175°F (1190°C)

Reductions per pass:
- Hammer forging, cast structure ~10%

- Hammer forging, wrought structure ~20%

Hot Rolling

The criteria for selection of optimum rolling temperature and reduction
schedule were trade-offs between (1) minimum edge cracking, (2) minimum
grain growth, (3) minimum amounts of grain boundary and matrix precipitates,
and (4) minimum as-rolled hardness. The maximum hot rolling reductions

per pass without significant edge cracking at the three temperatures in-
vestigated are shown in Table III.

These data show that material from the ESR PF-11 heat could be reduced in
significantly greater amounts per pass than material from the VAR 20-5
heat, again indicating better hot workability of ESR material. To optimize
rolling temperature with respect to microstructure, samples were subse-
quently reduced identically from 1 in. (2.5 cm) thickness to 0.100 in.
(0.25 cm) thickness at 2100, 2175, and 2250°F (1150, 1190, and 1230°C) as
discussed in Section 3.

Microstructures of samples from ESR PF-11 and VAR 20-5 rolled with tempera-
ture being the only variable are given in Figures 6 and 7, respectively.
As expected, metallographic observation indicated a slightly increasing
grain size with increasing rolling temperature. The resulting grain sizes
and R, hardness values are shown in Table IV, (All reported R, hardness
values are the average from a minimum of six measurements producing a mean

TABLE III

MAXIMUM HOT ROLLING REDUCTIONS PER PASS ACHIEVED WITHOUT EDGE CRACKING

Temperature Reduction (%)
°p °c ESR PF-11 VAR 20-1
2100 1150 A 35
2175 1190 >44 >35
2250 1230 >50 50

17
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standard deviation of about + 1 R..) The grain size of the alloy appears
to be less sensitive to working temperature within this temperature range
than that of other similar alloys such as L-605. As expected, the amount
of precipitated carbides in the matrix was greater for material rolled at
2100°F (1150°C) than at 2175°F (1190°C) or 2250°F (1230°C). No grain
boundary precipitation was noted at 1000X magnification for material rolled
at any temperature. The hardness data in Table IV showed no significant
effect of rolling temperature.

It was noted that ESR billet PF-11 had better workability characteristics
than VAR billet 20-5. Although there was a large difference in as-forged
grain size between these two billets (i.e., 20 versus 38 microns), this
difference was minimized during hot rolling (12 versus 9 microns for
rolling at 2175°F (1190°C)).

Completion of the hot rolling study resulted in the establishment of
typical hot rolling parameters for VM-103 sheet, i.e.,:

Temperature: 2175°F (1190°C)

Reductions per pass:
' - Forged billets 12-15%
- Previously hot rolled sheet 15-35%

Cold Rolling

As indicated in Section 3, cold rolling studies were performed to establish
base line parameters for cold rolling sheet or foil, to establish work
hardening rates, and to compare effects of melting process (VAR vs. ESR) on
cold workability.

The maximum cold rolling reductions attainable without significant edge
cracking for each of the four heats investigated along with resulting
hardnesses were as shown in Table V. With the exception of heat PF-1l1
which showed little or no edge cracking at reductions less than 37%, the
maximum nominal reductions per pass were 25% which produced a hardness of
about Rockwell C-50. Heat PF~1l, the most workable ESR heat available
during that period of the program, showed no further hardening effects even
at a 37% reduction. Heat PF-13 was the most difficult to cold roll and
exhibited a tendency for very severe edge cracking at reductions greater
than 25%. This may have resulted from a compositional effect, i.e., high
Ti, a carbide former (as shown in Table I).

A percent cold work vs. hardness curve (Figure 8 ) was generated, which

shows a rather rapid work hardening rate and a maximum hardness of approxi-
mately Rockwell C-52,
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FIGURE 8. HARDNESS VS, PERCENT COLD REDUCTION OF VM-103.
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TABLE V

MAXTMUM NOMINAL COLD ROLLING REDUCTIONS PER PASS WITHOUT EDGE CRACKING

Maximum As-Rolled
Heat Reduction (%) Hardness (Rb)
VAR 20-1 25 50
VAR 20-5 25 50
PF-11 37 50
PF-13 25 51

Using nominal 25% maximum reductions and 2200°F (1205°C), 1/2 hour inter-
mediate annealing treatments, samples of 0.012 in., (0.30 mm) thick foil
were produced from all ESR and VAR sheet with a starting thickness of

.01 in. (2.5 mm) with little or no difficulty. Again, ESR heat PF-11
appeared to be the most workable, The 0.012 in. (0.30 mm) thickness was
selected as a severe test of cold workability and as a usable size since
many missile hot gas valve components utilize superalloy foils in this
thickness range.

Based on the above data and the annealing studies discussed below, a typical
cold rolling schedule for VM-103 was established, i.e.,:

Nominal maximum reductions per pass: 25%

Intermediate annealing parameters: 2200°F (1205°C)
1/2 hour, water quench

Annealing

Selection of optimum annealing parameters for VM-103 was considered to be

an important part of the development of the alloy, particularly in view of
published data on L-605 (Co-15W-10Ni-20Cr superalloy). Data generated by
Schulz on L-605 showed that 2150°F (1175°C) was superior to the conventional
2250°F (1230°C) with respect to grain size control and post aging ductility.
Harlow later confirmed the necessity of controlling grain size and grain
boundary precipitates by adjusting annealing temperatures, times, and
cooling rates for maximum cold workability.

8

The criteria for selection of annealing parameters (temperature and cooling
rate) for VM-103 were (1) minimum grain growth, (2) minimum amount of grain
boundary and matrix precipitation, and (3) minimum hardness. The same
criteria were utilized for both hot worked and cold worked material.
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Because the effects of prior condition on grain growth, carbide precipitation,
etc. were unknown, data were necessary to determine if different annealing
parameters for each condition would be desirable.

As discussed in Section 3, hot-rolled and 25% cold-rolled samples of the
VAR and ESR sheet material were subjected to annealing treatments of 1/2
hour at 2100°F, 2200°F, and 2300°F (1150°C, 1205°C, and 1260°C) and water
quenched, Selected samples were heated similarly and air-cooled, or
furnace-cooled to establish effects of cooling rate.

The grain size and hardness data resulting from these samples are presented
in Table IV. The data indicate a very slight average decrease in hard-
ness of 2-3 Rockwell C hardness numbers when the annealing temperature was
raised from 2100°F (1150°C) to 2300°F (1260°C). This was true for both

the hot and cold rolled ESR material, while the VAR material appeared to

be less sensitive to annealing temperature. The annealed VAR material was
several points harder in every case than the ESR.

Air cooling vs. water quenching resulted in virtually no effect on hardness,
probably resulting from the relative rapid cooling rate achieved upon air
cooling the thin sheet specimens. However, furnace cooling produced sig-
nificantly higher hardnesses for prior hot-worked and prior cold-worked
material as shown in Table IV. Optical microscopy showed no apparent
explanation for this, since no differences were observed as shown in

Figure 9., Further effort involving electron microscopy would be required
to analyze this effect in greater detail.

The effect of annealing temperature on grain size showed a slight grain

growth with increasing temperature, This increase was approximately of

the same magnitude for both the prior cold-worked and hot-worked sheet,

which indicated that the same annealing parameters could be selected for
each,

The microstructures of hot rolled and cold rolled sheet after annealing at
2100, 2200, and 2300°F (1150, 1205, and 1260°C) for 1/2 hour and water
quenched are shown in Figures 10 and 11. The carbide distribution appeared
insensitive to annealing temperature, with no evidence of undesirable pre-
cipitation in the grain boundaries. In general, the precipitates appeared
somewhat smaller in prior cold-worked and annealed material than in the
prior hot-worked and annealed material. This observation was made for both
ESR and VAR material, indicating a possible finer dispersion and strengthen-
ing effect from intermediate cold or warm working. Further investigation
of this phenomenon is recommended.

Based on the above hardness, grain size, and microstructure data and the
fact that slightly more surface oxidation occurs at 2300°F (1260°C) than
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at the lower temperatures, an annealing temperature of 2200°F (1205°C)
followed by a water quench was selected. Time at temperature was not in-
vestigated as a variable but would be expected to show little effect com-
pared to differences in temperature. For sheet material, the 1/2 hour
treatment utilized is probably more than adequate. Further work to optimize
time as a variable annealing parameter may be desirable

Aging

As indicated previously, NASA had indicated an aging phenomenon in VM-103,
particularly in the 1600°F (870°C) range, resulting from precipitation of a
Co3W phase associated with stacking faults in the hcp form of cobalt. The
goal of the related effort on this program was to achieve a better under-
standing of this effect and to determine if aging would be useful as a
strengthening mechanism.

Based on hot and cold workability, composition, and mechanical properties
(reported below), ESR heat PF-11 was selected for the aging study. The
0.100 in. (2.5 mm) thick sheet samples representing annealed and 25% cold-
worked sheet were encapsulated in quartz tubes and aged for 1, 10, and 100
hours at temperatures of 700, 1000, 1300, and 1600°F (370, 540, 705, and
870°C). Averaged hardness measurements after these various treatments are
shown in Figure 12. Only one aging temperature, 1300°F (705°C), caused a
response in the annealed sheet, causing an increase from Rockwell C-35 to
C-43. A very small amount of precipitation could be seen at 1000X magnifi-
cation on the prior-annealed sample aged at 1600°F (870°C) as shown in
Figure 13. but not on those prior-annealed samples aged . at the lower
temperatures. In contrast, all the prior cold-worked samples responded to
all the aging treatments in varying degrees, Figure 14. As can be seen,
the slopes of the 700°F and 1000°F (370°C and 540°C) aging curves were
still increasing after 100 hours, while overaging apparently occurred
after about 10 hours at 1300 and 1600°F (705°C and 870°C). As shown in
Figure 14, varying degrees of precipitation on the slip lines can be
qualitatively correlated with hardness. These aging phenomena point to
possible beneficial strengthening effects of thermomechanical processing.

Transmission electron microscopy was utilized on a very limited basis to
examine these aging phenomena. As in optical metallography, fine pre-
cipitates were observed on slip lines in cold-worked and aged samples.
Recovery of the 25% cold-worked material was incomplete after 100 hours at
1300°F (705°C) as indicated by transmission observations and diffuse
broadened electron diffraction rings. Additional work in this area coupled
with electron diffraction analysis for phase identification would be very
worthwhile,

Extraction X-ray diffraction analysis to identify constituent phases of

annealed, annealed and aged, and cold-worked and aged samples was also
performed. The semiquantitative results are given in Table VI. Based on
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a correlation of these results with the hardness and tensile property re-
sults (presented below), it was concluded that the major aging strengthen-
ing mechanism is due to precipitation of the Co3W phase which confirms
NASA data. It is also possible that the overaging phenomenon includes a
transformation from face centered cubic Co3W to hexagonal CogW which has
not been observed previously. A further investigation of this phenomenon
is recommended.

Tensile Tests

Conventional tensile tests were conducted according to the procedure in
Section 3 at 75, 1600, 1800, 2000, and 2200°F (24, 870, 980, 1095, and
1205°C) on hot rolled and annealed sheet from all five heats. In addition,
room temperature tests were performed on 15 and 25% cold-worked sheet from
VAR heats 20-1 and 20-5 and ESR heats PF-11 and PF-13. The goals were to
establish room and elevated temperature properties of material produced

by each melting process and to determine cold working effects on strength.
In addition, as an exploratory effort to determine effects of aging on
elevated temperature properties, 2200°F (1205°C) tests were performed on
hot rolled sheet samples of ESR PF-11 after annealing at 1300°F (705°C) for
100 hours,

The data on annealed material are presented in Table VII and are plotted

as the average of two samples in Figure 15. As can be seen, the annealed
ESR material showed slightly higher yield and ultimate tensile strengths
and generally higher elongations than the VAR material. The data generally
confirm or are slightly better than preliminary NASA data on small induc-
tion melted laboratory heats.

The data in Table VII show that the room temperature yield strength was
significantly increased by 15% cold work and nominally doubled by 25% cold
work. The ultimate strengths showed a smaller percentage increase, and
the elongations were significantly reduced. The ESR heat, PF-11, showed
the highest ductility of all heats both in the annealed and cold-worked
conditions. The results indicate the desirability of considering cold-
worked VM-103 for use in applications requiring high strengths at low or
intermediate temperatures, or even at high temperatures for short periods
of time,

As shown in Table VII, the 1300°F (705°C) 100 hour aging treatment was
effective in ralslng the 2200°F (1205°C) yield strength from 4.2 to 10.1
ksi (29 to 70 N/mm ) and in raising the ultimate strength from 7.6 to 10.4
ksi (52 to 72 N/mm?) while lowering the ductility from 97 to 68%. This
140% increase in yield strength indicates that additional work should be
performed in efforts to further improve elevated temperature strength for
relatively short time applications, perhaps by thermomechanical processing,
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High Strain Rate Tensile Tests

To investigate the effect of strain rate and to determine very short time
elevated temperature tensile properties, high strain rate tests were con-
ducted according to the procedure noted in Section 3. Samples of annealed,
15% cold-worked and 25% cold-worked sheet from ESR heat PF-11 were tested
at 75, 1800, 2000, and 2200°F (24, 980, 1095, and 1200°C) at a strain rate
of 5/minute.

The data, presented in Table VIII, show that VM-103 is very strain rate sensi-
tive. The yield strength data for all temperatures were at least two times
higher than the conventional strain rate results (Table VII).

The elevated temperature data show that at 1800°F (980°C) the recovery
process was more sluggish for 15% than for 25% cold-worked material. This
difference in kinetics as a function of percent prior cold deformation
became insignificant at 2200°F (1205°C). However, at 2000°F (1095°C) the
annealed material still showed higher strengths than the cold-worked
material. With the exception of the 15% cold-worked specimen tested at
2200°F (1205°C), the data indicated an increase in strength with soaking
time at temperature, indicating a possible rapid aging process.

Selected samples were examined by optical metallography after testing,
These indicated, as expected, more complete recrystallization with increasing
testing temperature and soaking time as shown in Figure 16.

Bend Tests

In order to assess the cold forming characteristics of ESR vs. VAR material,
bend tests were conducted on 0.030 in., (0.76 mm) sheet from ESR heats

PF-11 and PF-13 and VAR heats 20-1 and 20-5 according to the procedure in
Section 3. The results in Table IX indicated that VAR heat 20-1 exhibited
the poorest bend ductility; VAR 20-5 and ESR PF-13 were comparable, and

ESR PF-11 was far superior. These data supported the previously observed
superior hot and cold workability and ductility of ESR PF-11,.

Fatigue Testing

Tension~tension fatigue specimens were tested as discussed in Section 3
primarily for purposes of determining differences in fatigue behavior of
ESR vs. VAR material. No attempt was made to generate an S/N curve, The
data shown in Table X were very scattered but when averaged indicated a
slight superiority of the ESR heat. More work would be required using
standard F and t statistical tests in order to generate more reliable
conclusions.
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TABLE IX

MINIMUM BEND RADITI OF VM-103 HEATS
Minimum 90° Bend Test Radius

Heat Without Cracking
VAR 20-1 S4'T
VAR 20-5 4T
ESR PF-11 1T
ESR PF-13 4T

Note: T refers to thickness of the specimen
which was 0,030 in, (0.76 mm).

TABLE X

TENSION-TENSION FATIGUE TEST RESULTS

Total Cycles to Failure

VAR 20-1 ESK PF-11

37,000 212,400

576,000 18,600

82,100 15,100

130,900 138,000

100,100 676,800

25,300 ---
Averages: 158,600 212,200

Note: Samples were stressed 0 to 75
ksi (0 to 520 N/mm2)

5. SUMMARY OF RESULTS AND RECOMMENDATIONS

Based on the results of this VM-103 superalloy development and metallurgy
study, the following conclusions and recommendations were made:
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(1)

(2)

(3)

(4)

(5

VM-103 can be melted and fabricated by production
oriented processes including vacuum arc or
electroslag remelting, hammer forging, hot-rolling
and cold-rolling, and cold forming, The properties
of material produced from 25-50 1b. (11-23 kg) heats
using these processes with optimum parameters
developed on this program are comparable or somewhat
better than achieved on 3-4 1b. (<2 kg) laboratory
heats.

VM-103 appears to be competitive with conventional
nickel and cobalt base superalloys in fabricability
and in elevated temperature properties at or above
1800°F (980°C). It is particularly attractive as a
candidate for short time high temperature applications.

Electroslag remelted VM-103 reveals better hot and
cold workability, higher tensile properties, and
higher ductility than vacuum arc remelted material.

VM-103 work hardens rapidly with a corresponding
increase in strength and hardness. The increase in
strength is retained for short times at temperatures
as high as 1800°F (980°C).

The alloy is somewhat age hardenable due to precipi-
tation of a Co3W phase in the annealed condition and
to a greater degree after cold working. Preliminary
data indicated a 140% increase in 2200°F (1205°C)
yield strength as a result of aging prior annealed
material., Thermomechanical processing investigations
are recommended as a means for enhancing alloy
properties,
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